Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae.
نویسندگان
چکیده
Pyruvate carboxylase is the sole anaplerotic enzyme in glucose-grown cultures of wild-type Saccharomyces cerevisiae. Pyruvate carboxylase-negative (Pyc(-)) S. cerevisiae strains cannot grow on glucose unless media are supplemented with C(4) compounds, such as aspartic acid. In several succinate-producing prokaryotes, phosphoenolpyruvate carboxykinase (PEPCK) fulfills this anaplerotic role. However, the S. cerevisiae PEPCK encoded by PCK1 is repressed by glucose and is considered to have a purely decarboxylating and gluconeogenic function. This study investigates whether and under which conditions PEPCK can replace the anaplerotic function of pyruvate carboxylase in S. cerevisiae. Pyc(-) S. cerevisiae strains constitutively overexpressing the PEPCK either from S. cerevisiae or from Actinobacillus succinogenes did not grow on glucose as the sole carbon source. However, evolutionary engineering yielded mutants able to grow on glucose as the sole carbon source at a maximum specific growth rate of ca. 0.14 h(-1), one-half that of the (pyruvate carboxylase-positive) reference strain grown under the same conditions. Growth was dependent on high carbon dioxide concentrations, indicating that the reaction catalyzed by PEPCK operates near thermodynamic equilibrium. Analysis and reverse engineering of two independently evolved strains showed that single point mutations in pyruvate kinase, which competes with PEPCK for phosphoenolpyruvate, were sufficient to enable the use of PEPCK as the sole anaplerotic enzyme. The PEPCK reaction produces one ATP per carboxylation event, whereas the original route through pyruvate kinase and pyruvate carboxylase is ATP neutral. This increased ATP yield may prove crucial for engineering of efficient and low-cost anaerobic production of C(4) dicarboxylic acids in S. cerevisiae.
منابع مشابه
The role of tyrosine 207 in the reaction catalyzed by Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.
The functional significance of tyrosine 207 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase was explored by examining the kinetic properties of the Tyr207Leu mutant. The variant enzyme retained the structural characteristics of the wild-type protein as indicated by circular dichroism, intrinsic fluorescence spectroscopy, and gel-exclusion chromatography. Kinetic analyses of the mu...
متن کاملThe Role of Cysteine Residues in Catalysis of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis
Mycobacterium tuberculosis (MTb), the causative agent of tuberculosis, can persist in macrophages for decades, maintaining its basic metabolic activities. Phosphoenolpyruvate carboxykinase (Pck; EC 4.1.1.32) is a key player in central carbon metabolism regulation. In replicating MTb, Pck is associated with gluconeogenesis, but in non-replicating MTb, it also catalyzes the reverse anaplerotic re...
متن کاملBy-product formation during exposure of respiring Saccharomyces cerevisiae cultures to excess glucose is not caused by a limited capacity of pyruvate carboxylase.
Upon exposure to excess glucose, respiring cultures of Saccharomyces cerevisiae produce substantial amounts of ethanol and acetate. A possible role of a limited anaplerotic capacity in this process was investigated by overexpressing pyruvate carboxylase and by replacing it with a heterologous enzyme (Escherichia coli phosphoenolpyruvate carboxylase). Compared to the wild-type, neither the pyruv...
متن کاملAnalysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase.
Campylobacter jejuni is unable to utilize glucose as a carbon source due to the absence of the key glycolytic enzyme 6-phosphofructokinase. The genome sequence of C. jejuni NCTC 11168 indicates that homologues of all the appropriate enzymes for gluconeogenesis from phosphoenolpyruvate (PEP) are present, in addition to the anaplerotic enzymes pyruvate carboxylase (PYC), phosphoenolpyruvate carbo...
متن کاملAnaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains.
Malic enzyme catalyzes the reversible oxidative decarboxylation of malate to pyruvate and CO(2). The Saccharomyces cerevisiae MAE1 gene encodes a mitochondrial malic enzyme whose proposed physiological roles are related to the oxidative, malate-decarboxylating reaction. Hitherto, the inability of pyruvate carboxylase-negative (Pyc(-)) S. cerevisiae strains to grow on glucose suggested that Mae1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 76 16 شماره
صفحات -
تاریخ انتشار 2010